Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 817
Filtrar
1.
New Phytol ; 240(6): 2298-2311, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37680030

RESUMO

Populus fremontii is among the most dominant, and ecologically important riparian tree species in the western United States and can thrive in hyper-arid riparian corridors. Yet, P. fremontii forests have rapidly declined over the last decade, particularly in places where temperatures sometimes exceed 50°C. We evaluated high temperature tolerance of leaf metabolism, leaf thermoregulation, and leaf hydraulic function in eight P. fremontii populations spanning a 5.3°C mean annual temperature gradient in a well-watered common garden, and at source locations throughout the lower Colorado River Basin. Two major results emerged. First, despite having an exceptionally high Tcrit (the temperature at which Photosystem II is disrupted) relative to other tree taxa, recent heat waves exceeded Tcrit , requiring evaporative leaf cooling to maintain leaf-to-air thermal safety margins. Second, in midsummer, genotypes from the warmest locations maintained lower midday leaf temperatures, a higher midday stomatal conductance, and maintained turgor pressure at lower water potentials than genotypes from more temperate locations. Taken together, results suggest that under well-watered conditions, P. fremontii can regulate leaf temperature below Tcrit along the warm edge of its distribution. Nevertheless, reduced Colorado River flows threaten to lower water tables below levels needed for evaporative cooling during episodic heat waves.


Assuntos
Populus , Árvores , Árvores/fisiologia , Populus/fisiologia , Folhas de Planta/fisiologia , Sudoeste dos Estados Unidos , Temperatura
2.
New Phytol ; 240(4): 1519-1533, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37615210

RESUMO

Little is known about how sex differences in root zone characteristics, such as contents of allelochemicals and soil microbial composition, mediate intra- and intersexual interactions in dioecious plants. We examined the processes and mechanisms of sex-specific belowground interactions mediated by allelochemicals and soil microorganisms in Populus cathayana females and males in replicated 30-yr-old experimental stands in situ and in a series of controlled experiments. Female roots released a greater amount and more diverse phenolic allelochemicals into the soil environment, resulting in growth inhibition of the same sex neighbors and deterioration of the community of soil microorganisms. When grown with males, the growth of females was consistently enhanced, especially the root growth. Compared with female monocultures, the presence of males reduced the total phenolic accumulation in the soil, resulting in a shift from allelopathic inhibition to chemical facilitation. This association was enhanced by a favorable soil bacterial community and increased bacterial diversity, and it induced changes in the orientation of female roots. Our study highlighted a novel mechanism that enhances female performance by males through alterations in the allelochemical content and soil microbial composition. The possibility to improve productivity by chemical mediation provides novel opportunities for managing plantations of dioecious plants.


Assuntos
Populus , Animais , Populus/fisiologia , Solo/química , Feromônios , Plantas , Raízes de Plantas
3.
Plant Physiol Biochem ; 201: 107838, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37364510

RESUMO

Perennial plants are frequently exposed to severe and prolonged drought, and when the balance between water transport and transpirational demand is compromised trees are in danger of embolism formation. To maintain the physiological balance, plants can rely on mechanisms to quickly recover the lost xylem hydraulic capacity and reduce the prolonged impact on photosynthetic activity upon rehydration. Among factors helpful for plants to sustain acclimation and adaptation responses to drought and promote recovery, maintaining an optimal nutritional status is crucial for plant survival. This study aimed to investigate the physiological and biochemical responses under drought and recovery of Populus nigra plants grown in soil with impaired nutrient bioavailability obtained by adding calcium oxide (CaO) to the substrate. Although the CaO treatment did not affect plant growth, in well-watered conditions, treated poplars displayed an impaired inorganic ions profile in tissues. Under drought, although CaO-treated and untreated plants showed similar physiological responses, the former closed the stomata earlier. During water stress relief, the CaO-treated poplars exhibited a faster stomatal opening and a higher capacity to restore xylem hydraulic conductivity compared to not-treated plants, probably due to the higher osmolyte accumulation during drought. The content of some inorganic ions (e.g, Ca2+ and Cl-) was also higher in the xylem sap collected from stressed CaO-treated plants, thus contributing to increase the osmotic gradient necessary for the recovery. Taken together, our results suggest that CaO treatment promotes a faster and more efficient plant recovery after drought due to a modulation of ions homeostasis.


Assuntos
Secas , Populus , Solo/química , Folhas de Planta/fisiologia , Populus/fisiologia , Íons , Xilema/fisiologia
4.
Sci Total Environ ; 894: 165023, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37348726

RESUMO

Tropospheric ozone (O3) is a typical air pollutant with harmful effects on plants, whereas arbuscular mycorrhizal (AM) fungi are ubiquitous plant symbionts that enhance plant resistance to various abiotic stresses. However, whether AM symbiosis decreases plant O3 sensitivity and what the underlying mechanisms are remain unclear. In this study, O3-tolerant poplar clone 107 and O3-sensitive poplar clone 546 were used as test plants. An open-top chamber experiment was conducted to investigate the effects of AM inoculation on plant growth and physiological parameters under O3 enrichment. The results showed that O3 enrichment significantly decreased plant biomass and net photosynthetic rate and increased the leaf shedding rate and malondialdehyde concentration of clone 546. Generally, clone 107 was less responsive to O3 enrichment than clone 546 was. Differences in antioxidant enzyme activity, rather than in specific leaf weight or stomatal conductance, were responsible for the differences in O3 sensitivity between the two clones. AM inoculation significantly increased the biomass and decreased the leaf shedding rate and malondialdehyde concentration of clone 107 but had no significant effect on almost all the indexes of clone 546, suggesting a species-specific mycorrhizal effect on plant O3 sensitivity. Mechanistically, AM symbiosis did not significantly affect nutrient uptake, stomatal conductance, or specific leaf weight of poplar but did significantly increase antioxidant enzyme activity. Linear regression analysis of antioxidant enzyme activities and the effect of O3 on growth and physiological parameters showed that AM symbiosis mediated antioxidant enzyme activities to mitigate O3 injury to the two poplar clones. This study improved the understanding of the protective effects of AM fungi on plants against O3 pollution.


Assuntos
Micorrizas , Ozônio , Populus , Antioxidantes/farmacologia , Simbiose , Ozônio/análise , Fotossíntese , Populus/fisiologia , Folhas de Planta/química , Plantas
5.
Sci Total Environ ; 892: 164397, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37247732

RESUMO

As a tree species of shelterbelts, Populus popularis maintains significant ecological functions in arid and semiarid areas. However, stand transpiration (T) and canopy conductance (gc) dynamics of P. popularis are unclear in arid irrigated areas with shallow groundwater fluctuations. To better understand the responses of T and gc to meteorological factors, soil water, and shallow groundwater in arid areas, we observed the environmental conditions and sap flow of P. popularis, and quantified T and gc in three growing seasons of 2018-2020 in a typical arid area of China. Results showed T and gc ranged from 0.18 to 6.11 mm day-1 and 2.26-12.54 mm s-1 in 2018-2020, respectively. Solar radiation and vapor pressure deficit (VPD) were major drivers of T at daily scales. It was consistently found that T exponentially decreased with increasing groundwater table depth (GTD) and decreasing reference evapotranspiration in three years. gc is primarily influenced by VPD and is positively related to soil water content in 0-30 cm soil layer (SWC0-30 cm). Moreover, low SWC0-30 cm and deepening GTD jointly decreased T and gc by 22.45 % and 30.41 %, respectively. The response of gc to VPD was susceptible to groundwater fluctuations, and the synergistic influences of VPD and GTD on gc could be well described by the logarithmic function, especially in 2019. The sensitivity of gc to VPD and its variations under different environmental conditions suggested that a flexible stomatal regulation of transpiration occurred in the observed P. popularis with the arid climate and shallow groundwater. These findings provided the essential basis for the water use strategy of P. popularis and stand water resources management in arid regions.


Assuntos
Populus , Água , Água/fisiologia , Populus/fisiologia , Transpiração Vegetal/fisiologia , Solo , Estações do Ano , Árvores/fisiologia
6.
Ying Yong Sheng Tai Xue Bao ; 34(5): 1244-1252, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37236941

RESUMO

To deeply understand the effects of water and temperature factors on the xylem formation of Populus euphratica, taking the Yingsu section in the lower reaches of Tarim River as an example, we selected micro-coring samples of P. euphratica around monitoring wells F2 and F10 in the 100 and 1500 m distance from the channel of Tarim River. We used wood anatomy method to analyze the xylem anatomy of P. euphratica and its response to water and temperature factors. The results showed that the changes of the total anatomical vessel area and the vessel number of P. euphratica in the two plots were basically consistent during the whole growing season. The vessel number of xylem conduits of P. euphratica increased slowly with the increases of groundwater depth, while the total conduit area increased firstly and then decreased. The total vessel area, minimum vessel area, average vessel area, and maximum vessel area of P. euphratica xylem increased significantly with the increases of temperature in the growing season. The contribution of groundwater depth and air temperature to P. euphratica xylem varied among different growth stages. In the early growing season, air temperature had the largest contribution to the number and total area of xylem conduits of P. euphratica. During the middle growing season, air temperature and groundwater depth jointly affected the parameters of each conduit. During the later growing season, groundwater depth had the largest contribution to the number and total area of conduits. Results of the sensitivity analysis indicated that the groundwater depth sensitive to xylem vessel number change of P. euphratica was 5.2 m and that to the change in the total conduit area was 5.9 m. The temperature sensitive to total vessel area of P. euphratica xylem was 22.0 ℃, and that to average vessel area was 18.5 ℃. Therefore, the sensitive groundwater depth affecting xylem growth was at the range of 5.2-5.9 m, and the sensitive temperature was at the range of 18.5-22 ℃. This study could provide scientific basis for the restoration and protection of P. euphratica forest in the lower reaches of Tarim River.


Assuntos
Populus , Populus/fisiologia , Temperatura Alta , Rios , Água , China , Madeira , Xilema
7.
Plant Physiol ; 192(2): 1046-1062, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36932687

RESUMO

Secondary growth in woody plants generates new cells and tissues via the activity of the vascular cambium and drives the radial expansion of stems and roots. It is regulated by a series of endogenous factors, especially transcription factors. Here, we cloned the basic helix-loop-helix (bHLH) transcription factor gene UNFERTILIZED EMBRYO SAC12 (UNE12) from poplar (Populus alba × Populus glandulosa Uyeki) and used biochemical, molecular, and cytological assays to investigate the biological functions and regulatory mechanism of PagUNE12. PagUNE12 mainly localized in the nucleus and possessed transcriptional activation activity. It was widely expressed in vascular tissues, including primary phloem and xylem and secondary phloem and xylem. Poplar plants overexpressing PagUNE12 showed significantly reduced plant height, shorter internodes, and curled leaves compared with wild-type plants. Optical microscopy and transmission electron microscopy revealed that overexpressing PagUNE12 promoted secondary xylem development, with thicker secondary cell walls than wild-type poplar. Fourier transform infrared spectroscopy, confocal Raman microscopy, and 2D Heteronuclear Single Quantum Correlation analysis indicated that these plants also had increased lignin contents, with a lower relative abundance of syringyl lignin units and a higher relative abundance of guaiacyl lignin units. Therefore, overexpressing PagUNE12 promoted secondary xylem development and increased the lignin contents of secondary xylem in poplar, suggesting that this gene could be used to improve wood quality in the future.


Assuntos
Lignina , Populus , Lignina/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Populus/fisiologia , Xilema , Madeira/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Parede Celular/metabolismo
8.
Sci Total Environ ; 874: 162479, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36858242

RESUMO

Plant-soil feedback (PSF) and competition influence plant performance, community structure and functions. However, how nutrient availability affects the interaction of PSF, sexual competition and coexistence in dioecious plants is poorly understood. In this study, the strengths of PSF and sexual competition, and their responses to nutrient availability were assessed in dioecious Populus cathayana using a garden experiment. We found that PSF reduced but did not eliminate the inequal sexual competition at low nitrogen (N) availability. Intersexual competition and nutrient limitation induced more negative PSF, which promoted sexual coexistence. PSF and competition were rather related to sexual dimorphism. Female plants experience more positive PSF and intersexual competition under adequate N conditions compared to males; the contrary was true with low N supply. Furthermore, the stability of root exudate networks and soil nutrient availability reflects the possibility of sexual coexistence regulated by PSF. Intersexual interaction promote more stable root exudate profiles and more saccharide secretion at low N supply. Meanwhile, the increased soil N and P mineralization in females with cultivated males explained the possible coexistence between females and males at low nutrient availability. Thus, these results indicate that soil biota can mitigate differences in sexual competitiveness and improve the stability of root exudate networks, consequently promoting sexual coexistence at low nutrient availability.


Assuntos
Populus , Populus/fisiologia , Solo/química , Retroalimentação , Plantas , Nitrogênio
9.
Sci Total Environ ; 875: 162721, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36898537

RESUMO

Increasing ozone (O3) and nitrogen (N) addition may have contradictory effects on plant photosynthesis and growth. However, it remains unclear whether these effects on aboveground parts further change the root resource management strategy and the relationships of fine root respiration and biomass with other physiological traits. In this study, an open-top chamber experiment was conducted to investigate the effects of O3 alone and in combination with nitrogen (N) addition on root production and fine root respiration of poplar clone 107 (Populus × euramericana cv. '74/76'). Saplings were grown with (100 kg ha-1 year-1) or without (+0 kg ha-1 year-1) N addition under two O3 regimes (non-filtered ambient air or non-filtered ambient air + 60 ppb of O3). After about two to three months of treatment, elevated O3 significantly decreased fine root biomass and starch content but increased fine root respiration, which occurred in tandem with inhibited leaf light-saturated photosynthetic rate (Asat). Nitrogen addition did not change fine root respiration or biomass, neither did it alter the effect of elevated O3 on the fine root traits. However, N addition weakened the relationships of fine root respiration and biomass with Asat, fine root starch and N concentrations. No significant relationships of fine root biomass and respiration with soil mineralized N were observed under elevated O3 or N addition. These results imply that changed relationships of plant fine root traits under global changes should be considered into earth system process models to project more accurately future carbon cycle.


Assuntos
Ozônio , Populus , Biomassa , Ozônio/farmacologia , Populus/fisiologia , Nitrogênio/farmacologia , Fotossíntese , Folhas de Planta/fisiologia
10.
Sci Total Environ ; 875: 162672, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36894106

RESUMO

Ozone (O3) pollution is a persistent environmental issue worldwide, which causes widespread damage to vegetation, deteriorating plant health and reducing plant productivity. Ethylenediurea (EDU) is a synthetic chemical that has been widely applied in scientific studies as a protectant against O3 phytotoxicities. Despite four decades of active research, the exact mechanisms to explain its mode of action remain unclear. Here, we aimed to reveal whether EDU's phytoprotective property is due to its control over stomatal regulation and/or its action as a nitrogen (N) fertilizer, utilizing stomatal-unresponsive plants of a hybrid poplar (Populus koreana × trichocarpa cv. Peace) grown in a free-air O3-concenctration enrichment (FACE) facility. Plants were treated with water (WAT), EDU (400 mg L-1), or EDU's constitutive amount of N every nine days, and exposed to ambient (AOZ) or elevated (EOZ) O3 during a growing season (June-September). EOZ led to extensive foliar injuries (but protected against rust disease), lower photosynthetic rate (A), impaired dynamics of responses of A to changes in light intensity, and smaller total plant leaf area. EDU protected against common phytotoxicities caused by EOZ without inducing stomatal closure, since stomatal conductance (gs) was generally unresponsive to the experimental treatments. EDU also modulated the dynamic response of A to light fluctuations under O3 stress. N addition acted as a fertilizer but did not satisfactorily protect plants against O3 phytotoxicities. The results suggest that EDU protects against O3 phytotoxicity not by adding N or controlling stomata, which provides a new insight into our understanding of the mode of action of EDU as a protectant against O3 phytotoxicity.


Assuntos
Poluentes Atmosféricos , Ozônio , Populus , Ozônio/toxicidade , Populus/fisiologia , Nitrogênio/farmacologia , Fertilizantes , Folhas de Planta , Fotossíntese/fisiologia , Substâncias Protetoras/farmacologia , Plantas , Poluentes Atmosféricos/toxicidade
11.
Plant Physiol ; 192(1): 188-204, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36746772

RESUMO

Despite the high economic and ecological importance of forests, our knowledge of the adaptive evolution of leaf traits remains very limited. Euphrates poplar (Populus euphratica), which has high tolerance to arid environment, has evolved four heteromorphic leaf forms, including narrow (linear and lanceolate) and broad (ovate and broad-ovate) leaves on different crowns. Here, we revealed the significant functional divergence of four P. euphratica heteromorphic leaves at physiological and cytological levels. Through global analysis of transcriptome and DNA methylation across tree and leaf developmental stages, we revealed that gene expression and DNA epigenetics differentially regulated key processes involving development and functional adaptation of heteromorphic leaves, such as hormone signaling pathways, cell division, and photosynthesis. Combined analysis of gene expression, methylation, ATAC-seq, and Hi-C-seq revealed longer interaction of 3D genome, hypomethylation, and open chromatin state upregulates IAA-related genes (such as PIN-FORMED1 and ANGUSTIFOLIA3) and promotes the occurrence of broad leaves while narrow leaves were associated with highly concentrated heterochromatin, hypermethylation, and upregulated abscisic acid pathway genes (such as Pyrabactin Resistance1-like10). Therefore, development of P. euphratica heteromorphic leaves along with functional divergence was regulated by differentially expressed genes, DNA methylation, chromatin accessibility, and 3D genome remodeling to adapt to the arid desert. This study advances our understanding of differential regulation on development and functional divergence of heteromorphic leaves in P. euphratica at the multi-omics level and provides a valuable resource for investigating the adaptive evolution of heteromorphic leaves in Populus.


Assuntos
Populus , Populus/fisiologia , Multiômica , Folhas de Planta/metabolismo , Transcriptoma/genética , Cromatina/metabolismo , Regulação da Expressão Gênica de Plantas
12.
Plant Physiol ; 191(3): 1702-1718, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36535002

RESUMO

Leaf margins are complex plant morphological features that contribute to leaf shape diversity, which affects plant structure, yield, and adaptation. Although several leaf margin regulators have been identified to date, the genetic basis of their natural variation has not been fully elucidated. In this study, we profiled two distinct leaf morphology types (serrated and smooth) using the persistent homology mathematical framework (PHMF) in two poplar species (Populus tomentosa and Populus simonii, respectively). A combined genome-wide association study (GWAS) and expression quantitative trait nucleotide (eQTN) mapping were applied to create a leaf morphology control module using data from P. tomentosa and P. simonii populations. Natural variation in leaf margins was associated with YABBY11 (YAB11) transcript abundance in poplar. In P. tomentosa, PtoYAB11 carries a premature stop codon (PtoYAB11PSC), resulting in the loss of its positive regulation of NGATHA-LIKE1 (PtoNGAL-1) and RIBULOSE BISPHOSPHATE CARBOXYLASE LARGE SUBUNIT (PtoRBCL). Overexpression of PtoYAB11PSC promoted serrated leaf margins, enlarged leaves, enhanced photosynthesis, and increased biomass. Overexpression of PsiYAB11 in P. tomentosa promoted smooth leaf margins, higher stomatal density, and greater light damage repair ability. In poplar, YAB11-NGAL1 is sensitive to environmental conditions, acts as a positive regulator of leaf margin serration, and may also link environmental signaling to leaf morphological plasticity.


Assuntos
Estudo de Associação Genômica Ampla , Populus , Populus/fisiologia , Folhas de Planta/fisiologia , Fenótipo , Fotossíntese/genética
13.
Int J Phytoremediation ; 25(9): 1189-1198, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36368337

RESUMO

Phenolic acids can reduce nitrogen utilization rate of poplar, which seriously restrict the productivity of poplar plantation. In this study, three phenolic acid concentrations (T0, T1, and T2) and three ratios of nitrogen forms (NH4+-N to NO3--were 1:3, 1:7, and 1:14) were chosen for orthogonal experiment on poplar (Populus × euramericana "Neva") seedlings to study the effects of the nitrogen form ratios on photosynthetic productivity of poplar under environment of phenolic acids. Results showed that photosynthetic physiology parameters were influenced by both phenolic acid concentration and nitrogen form ratio. The order of net photosynthetic rate (PN) values obtained from 9 treatments were T1-1:3, T0-1:3, T2-1:3, T0-1:7, T1-1:7, T0-1:14, T2-1:7, T1-1:14, and T2-1:14 (from high to low). Under environment of phenolic acids, when poplar were treated with NH4+-N to NO3--N ratio of 1:14, the major limitation factor of photosynthesis was non stomatal factor. When poplar were treated with NH4+-N to NO3-N ratio of 1:3, the major limitation factor of photosynthesis changed to stomatal factor. The leaf nitrogen content and total biomass were obviously positively related with PN (p < 0.05). Phenolic acid inhibited photosynthetic productivity of poplar in a major way and this effect decreased with increase of the content of NH4+-N.


Increasing the ratio of ammonia nitrogen fertilizer in soil can effectively reduce the toxic effect of phenolic acids on poplar and improve the photosynthetic productivity of poplar.


Assuntos
Nitrogênio , Populus , Nitrogênio/análise , Populus/fisiologia , Biodegradação Ambiental , Fotossíntese , Folhas de Planta/química
14.
Artigo em Inglês | MEDLINE | ID: mdl-36361409

RESUMO

The volatile organic compounds emitted by plants significantly impact the atmospheric environment. The impacts of drought stress on the biogenic volatile organic compound (BVOC) emissions of plants are still under debate. In this study, the effects of two drought-rehydration cycle groups with different durations on isoprene emissions from Populus nigra (black poplar) seedlings were studied. The P. nigra seedlings were placed in a chamber that controlled the soil water content, radiation, and temperature. The daily emissions of isoprene and physiological parameters were measured. The emission rates of isoprene (Fiso) reached the maximum on the third day (D3), increasing by 58.0% and 64.2% compared with the controlled groups, respectively, and then Fiso significantly decreased. Photosynthesis decreased by 34.2% and 21.6% in D3 in the first and second groups, respectively. After rehydration, Fiso and photosynthesis recovered fully in two groups. However, Fiso showed distinct inconsistencies in two groups, and the recovery rates of Fiso in the second drought group were slower than the recovery rates of Fiso in the first groups. The response of BVOC emissions during the drought-rehydration cycle was classified into three phases, including stimulated, inhibited, and restored after rehydration. The emission pattern of isoprene indicated that isoprene played an important role in the response of plants to drought stress. A drought-rehydration model was constructed, which indicated the regularity of BVOC emissions in the drought-rehydration cycle. BVOC emissions were extremely sensitive to drought, especially during droughts of short duration. Parameters in computational models related to BVOC emissions of plants under drought stress should be continuously improved.


Assuntos
Populus , Compostos Orgânicos Voláteis , Populus/fisiologia , Secas , Plântula , Fotossíntese , Plantas , Hidratação , Folhas de Planta
15.
Ecotoxicol Environ Saf ; 246: 114154, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36228354

RESUMO

Nitrogen (N) deposition plays a significant role in soil cadmium (Cd) phytoremediation, and poplar has been considered for the remediation of contaminated soil because of its enormous biomass and strong Cd resistance. To reveal the underlying physiological and root phenotypic mechanisms of N deposition affecting Cd phytoextraction in poplar, we assessed root phenotypic characteristics, Cd absorption and translocation, chlorophyll fluorescence performance, and antioxidant enzyme activities of a clone of Populus deltoides × P. nigra through combined greenhouse Cd and N experiments. Our results showed that Cd significantly changed the root phenotype by reducing root length, tip number, and diameter. Cd also caused the peroxidation of lipids, damaged the photosystem II (PSII) reaction centre, and reduced photosynthetic capacity, resulting in a decrease in biomass accumulation in poplar. The N60 (60 kg N·ha-1·yr-1) and N90 (90 kg N·ha-1·yr-1) treatments promoted the net photosynthetic rate of poplar by increasing the activity of antioxidant enzymes and proline content and repairing the PSII reaction centre, thus increasing the biomass accumulation of poplar exposed to Cd stress. Simultaneously, the N60 and N90 treatments might have increased Cd uptake from the soil by upregulating total root length, root tips, and fine root length. Cd mainly accumulated in roots and stems but not in leaves. The N30 (30 kg N·ha-1·yr-1) treatment had no obvious effects on these parameters compared with the single Cd treatment. Consequently, our study suggested that adequate N can improve biomass and Cd accumulation to enhance the phytoremediation capacity of poplar for Cd, which might be related to the improvement of leaf physiological defence and the change in root phenotypic characteristics.


Assuntos
Populus , Poluentes do Solo , Cádmio/toxicidade , Populus/fisiologia , Biodegradação Ambiental , Biomassa , Antioxidantes , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Solo , Nitrogênio , Raízes de Plantas/química
16.
Gene ; 837: 146692, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35760288

RESUMO

SAUR (small auxin-up RNA) is an early auxin-responsive gene. In this study, a novel SAUR gene PtSAUR8 was cloned from poplar (Populus trichocarpa), and subcellular location analysis showed that it is targeted to the nuclear membrane. In addition, PtSAUR8 overexpression in Arabidopsis improved the plant resistance to drought stress. Meanwhile, the loss of function mutant saur53 showed more drought sensitivity compared to the WT. PtSAUR8 conferred drought tolerance in transgenic Arabidopsis, as determined through phenotypic and stress-associated physiological indicator analyses, namely, root length, germination rate, relative water content, proline content, CAT content, POD content, malondialdehyde content, hydrogen peroxide content, and relative conductivity. In addition, after the 1 µM abscisic acid (ABA) treatment, the PtSAUR8-OE lines promoted stomata closure. Quantitative fluorescence analysis of related genes induced by drought mutant stress further confirmed that overexpression of PtSAUR8 can improve drought resistance in transgenic Arabidopsis lines. Therefore, PtSAUR8 may play a role in plant drought resistance through ABA-mediated pathways; thus, providing new research materials for molecular breeding of poplar resistance.


Assuntos
Arabidopsis , Populus , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Populus/fisiologia , RNA/metabolismo , Estresse Fisiológico/genética
17.
Plant Biol (Stuttg) ; 24(5): 766-779, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35398958

RESUMO

Low-temperature thermal acclimation may require adjustments to N and water use to sustain photosynthesis because of slow enzyme functioning and high water viscosity. However, understanding of photosynthetic acclimation to temperatures below 11 °C is limited. We acclimated Populus balsamifera to 6 °C and 10 °C (6A and 10A, respectively) and provided the trees with either high or low N fertilizer. We measured net CO2 assimilation (Anet ), stomatal conductance (gs ), maximum rates of Rubisco carboxylation (Vcmax ), electron transport (Jmax ) and dark respiration (Rd ) at leaf temperatures of 2, 6, 10, 14 and 18 °C, along with leaf N concentrations. The 10A trees had higher Anet than the 6A trees at warmer leaf temperatures, which was correlated with higher gs in the 10A trees. The instantaneous temperature responses of Vcmax , Jmax and Rd were similar for trees from both acclimation temperatures. While soil N availability increased leaf N concentrations, this had no effect on acclimation of photosynthesis or respiration. Our results indicate that acclimation below 11 °C occurred primarily through changes in stomatal conductance, not photosynthetic biochemistry, and was unaffected by short-term N supply. Thermal acclimation of stomatal conductance should therefore be a priority for future carbon cycle model development.


Assuntos
Populus , Aclimatação/fisiologia , Dióxido de Carbono , Nitrogênio , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Populus/fisiologia , Temperatura , Árvores/fisiologia , Água
18.
Tree Physiol ; 42(7): 1350-1363, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35137223

RESUMO

The increased frequency and intensity of drought pose great threats to the survival of trees, especially in dioecious tree species with sexual differences in mortality and biased sex ratios. The sex-specific mechanisms underlying stem xylem anatomy and function and carbon metabolism in drought resistance and recovery were investigated in dioecious Populus cathayana Rehder. The sex-specific drought resistance and subsequent recovery were linked to the xylem anatomy and carbon metabolism. Females had a greater xylem vessel area per vessel, biomass and theoretically hydraulic efficiency under well-watered conditions. Conversely, males had a lower xylem lumen area, but greater vessel numbers, and a higher cell wall thickness, suggesting a theoretically conservative water-use strategy and drought resistance. The recovery of photosynthetic ability after drought in males was largely dependent on the recovery of xylem function and the regulation of the xylem carbohydrate metabolism. Additionally, the number of upregulated genes related to xylem cell wall biogenesis was greater in males relative to females under drought stress and subsequent rewatering, which facilitated drought resistance and xylem function restoration in males. These results suggested that sex-specific drought resistance and restoration were related to xylem anatomy and function, carbohydrate metabolism and cell turgor maintenance.


Assuntos
Secas , Populus , Animais , Carbono , Populus/fisiologia , Árvores/fisiologia , Água/fisiologia , Madeira/fisiologia , Xilema/fisiologia
19.
Tree Physiol ; 42(7): 1377-1395, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35134232

RESUMO

Many terrestrial biosphere models depend on an understanding of the relationship between stomatal conductance and photosynthesis. However, unlike the measurement of photosynthetic parameters, such as the maximum carboxylation capacity, where standard methods (e.g., CO2 response or ACi curves) are widely accepted, a consensus method for empirically measuring parameters representing stomatal response has not yet emerged. Most models of stomatal response to environment represent stomatal conductance as being bounded by a lower intercept parameter (g0), and linearly scaled based on a multivariate term described by the stomatal slope parameter (g1). Here we employ the widely used Unified Stomatal Optimization model, to test whether g1 and g0 parameters are impacted by the choice of measurement method, either on an intact branch or a cut branch segment stored in water. We measured paired stomatal response curves on intact and excised branches of a hybrid poplar clone (Populus deltoides Bartr. × Populus nigra L. OP367), measured twice over a diurnal period. We found that predawn branch excision did not significantly affect measured g0 and g1 when measured within 4 h of excision. Measurement in the afternoon resulted in significantly higher values of g1 and lower values of g0, with values changing by 55% and 56%, respectively. Excision combined with afternoon measurement resulted in a marked effect on parameter estimates, with g1 increasing 89% from morning to afternoon and a 25% lower g1 for cut branches than those measured in situ. We also show that in hybrid poplar the differences in parameter estimates obtained from plants measured under different conditions can directly impact models of canopy function, reducing modeled transpiration by 18% over a simulated 12.5-h period. Although these results are only for a single isohydric woody species, our findings suggest that stomatal optimality parameters may not remain constant throughout the day.


Assuntos
Populus , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Transpiração Vegetal/fisiologia , Populus/fisiologia , Incerteza
20.
Sci Rep ; 12(1): 2856, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190606

RESUMO

The SQUAMOSA promoter-binding protein-like (SPL) family play a key role in guiding the switch of plant growth from juvenile to adult phases. Populus euphratica Oliv. exhibit typical heterophylly, and is therefore an ideal model for studying leaf shape development. To investigate the role and regulated networks of SPLs in the morphogenesis of P. euphratica heteromorphic leaves. In this study, 33 P. euphratica SPL (PeuSPL) genes were identified from P. euphratica genome and transcriptome data. Phylogenetic analysis depicted the classification of these SPL genes into two subgroups. The expression profiles and regulatory networks of P. euphratica SPL genes analysis displayed that major P. euphratica SPL family members gradually increases from linear to broad-ovate leaves, and they were involved in the morphogenesis regulation, stress response, transition from vegetative to reproductive growth, photoperiod, and photosynthesis etc. 14 circRNAs, and 33 lncRNAs can promote the expression of 12 of the P. euphratica SPLs by co-decoying miR156 in heteromorphic leaf morphogenesis. However, it was found that the effect of PeuSPL2-4 and PeuSPL9 in leaf shape development was contrasting to their homologous genes of Arabidopsis. Therefore, it was suggested that the SPL family were evolutionarily conserved for regulation growth, but were varies in different plant for regulation of the organ development.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas/genética , Morfogênese/genética , Folhas de Planta/genética , Populus/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fotossíntese/genética , Filogenia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Populus/crescimento & desenvolvimento , Populus/fisiologia , RNA Circular/fisiologia , RNA Longo não Codificante/fisiologia , RNA de Plantas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...